Reactive Monomers Derived from p-Vinylbenzoic Acid

By Yoshio Iwakura, Keikichi Uno, Nobuo Nakabayashi and Takakazu Kojima

(Received March 16, 1965)

The preparation and the application of reactive polymers have been studied in our laboratory.^{1,2)} Generally, reactive polymers can be obtained by the polymerization of so-called reactive monomers, which have a carbon-carbon double bond, and another functional group, such as epoxide, aziridine or isocyanate.

The present paper will describe the preparation of new reactive monomers derived from p-vinylbenzoic acid.^{3,4} Jäger's method was adopted for preparing the acid in this report.

Glycidyl p-Vinylbenzoate.— $p-\beta$ -Bromoethylbenzoic acid (I) was prepared by the procedure of Foreman.⁵⁾ I was treated with potassium hydroxide in ethanol in order to obtain potassium p-vinylbenzoate (II). The reaction of II and epichlorohydrin using triethylbenzylammonium chloride as a catalyst produced glycidyl p-vinylbenzoate (III), which was then distilled at 115.5—116.5°C/0.1 mmHg. The yield was 71%.

Found: C, 70.63; H, 6.01. Calcd. for $C_{12}H_{12}O_3$: C, 70.57; H, 5.92%.

The infrared absorption spectrum showed carbon-carbon double-bond bands at 1629, 987 and 918 cm⁻¹, epoxide at 907 and 839 cm⁻¹, carbonyl at 1720 cm⁻¹ and p-phenylene at 856 cm⁻¹. The epoxide content was 98.0%.

When the radical polymerization of III was carried out, linear poly-III was obtained; it had a η_{sp}/c value of 0.20 (0.2 g./100 ml. dioxane at 30.0°C), and the epoxide content of the polymer was 96.0%. The copolymerization of III (M₂) with styrene (M₁) was also studied. The monomer reactivity ratios were as follows: r_1 =0.40±0.02, and r_2 =0.95±0.10 (at 70.0±0.1°C). Alfrey-Price's Q and e values were 1.18 and 0.18 respectively. Nucleophilic reagents such as hydrogenchloride and alkyl amine, could easily be added to epoxy groups in the poly-III and the copolymer.

p-Vinylphenylisocyanate. — This compound^{6>} (b. p. 40.5—41.5°C/0.1 mmHg) was obtained through the acid chloride and the acid azide. The isocyanate gave a homopolymer with a vinyl group by means of the anionic polymerization of the isocyanate group at a low temperature. The radical polymerization, on the other hand, brought about one with a isocyanate group.

The details will be pulished in a short time.

Department of Synthetic Chemistry
Faculty of Engineering
The University of Tokyo
Hongo, Tokyo
(Y. I., K. U. & T. K.)

Research Institute of Dental Materials
Tokyo Medical and Dental University
Yushima, Bunkyo-ku
Tokyo (N. N.)

¹⁾ Y. Iwakura, T. Kurosaki and N. Nakabayashi, Makromol. Chem., 44/46, 570 (1961).

Y. Iwakura, N. Nakabayashi and H. Suzuki, ibid., 78, 168 (1964).

³⁾ S. Merill, J. Org. Chem., 26, 1301 (1961).

⁴⁾ P. Jäger and E. S. Waight, J. Chem. Soc., 1963, 1339.

⁵⁾ E. L. Foreman and S. M. McElvain, J. Am. Chem. Soc., 62, 1435 (1940).

⁶⁾ U. S. Pat. 2468713 (1949).